Effekttäthet och energitäthet för laser
Densitet är en fysisk storhet som vi är mycket bekanta med i vårt dagliga liv, densiteten vi kontaktar mest är materialets densitet, formeln är ρ=m/v, det vill säga densiteten är lika med massa dividerat med volym. Men laserns effekttäthet och energitäthet är olika, här dividerat med arean snarare än volymen. Effekt är också vår kontakt med många fysiska storheter, eftersom vi använder el varje dag, elektricitet kommer att involvera kraft, den internationella standardenheten för effekt är W, det vill säga J/s, är förhållandet mellan energi och tidsenhet, internationell standardenhet för energi är J. Så effekttätheten är konceptet att kombinera effekt och densitet, men här är strålningsarean för fläcken snarare än volymen, effekten dividerad med utgångspunktsytan är effekttätheten, dvs. , enheten för effekttäthet är W/m2, och ilaserfälteftersom laserbestrålningsfläckarean är ganska liten, så vanligtvis används W/cm2 som en enhet. Energitätheten tas bort från begreppet tid, genom att kombinera energi och densitet, och enheten är J/cm2. Normalt beskrivs kontinuerliga lasrar med hjälp av effekttäthet, medanpulserande lasrarbeskrivs med användning av både effekttäthet och energitäthet.
När lasern verkar avgör effekttätheten vanligtvis om tröskeln för att förstöra, eller ablatera eller andra verkande material nås. Tröskel är ett begrepp som ofta dyker upp när man studerar lasrars interaktion med materia. För studier av kort puls (som kan betraktas som USA-stadiet), ultrakort puls (som kan betraktas som ns-stadiet) och till och med ultrasnabba (ps- och fs-stadiet) laserinteraktionsmaterial, brukar tidiga forskare anta begreppet energitäthet. Detta koncept, på interaktionsnivån, representerar den energi som verkar på målet per ytenhet, i fallet med en laser på samma nivå är denna diskussion av större betydelse.
Det finns också en tröskel för energitätheten för enkelpulsinjektion. Detta gör också studiet av laser-materia-interaktion mer komplicerat. Men dagens experimentella utrustning förändras ständigt, en mängd olika pulsbredder, enstaka pulsenergi, repetitionsfrekvens och andra parametrar förändras ständigt, och måste till och med överväga laserns faktiska uteffekt i en pulsenergifluktuationer i fallet med energitäthet att mäta, kan vara för grov. Generellt sett kan man grovt anse att energitätheten dividerad med pulsbredden är den genomsnittliga effekttätheten i tiden (observera att det är tid, inte rum). Det är dock uppenbart att den faktiska laservågformen kanske inte är rektangulär, fyrkantig vågform eller ens klocka eller gaussisk, och en del bestäms av egenskaperna hos själva lasern, som är mer formad.
Pulsbredden ges vanligtvis av halvhöjdsbredden som tillhandahålls av oscilloskopet (full peak halvbredd FWHM), vilket får oss att beräkna värdet på effekttätheten från energitätheten, som är hög. Den mer lämpliga halva höjden och bredden bör beräknas av integralen, halva höjden och bredden. Det har inte gjorts någon detaljerad undersökning av om det finns en relevant nyansstandard för att veta. För själva effekttätheten, när man gör beräkningar, är det vanligtvis möjligt att använda en enstaka pulsenergi för att beräkna, en enda pulsenergi/pulsbredd/fläckarea , som är den rumsliga medeleffekten, och sedan multiplicerad med 2, för den rumsliga toppeffekten (den rumsliga fördelningen är Gauss-fördelning är en sådan behandling, top-hat behöver inte göra det), och sedan multipliceras med ett uttryck för radiell distribution , Och du är klar.
Posttid: 2024-jun-12